MANAGING FATIGUE AND SHIFT WORK

Prof Philippa Gander
PhD, FRSNZ
Fatigue is a hazard than can cause harm

Employers must:
- take all practicable steps to prevent harm occurring to employee
- adopt a systematic approach to identifying, assessing, and controlling hazards at work.

Employees must:
- Arrive fit for work.
- Behave safely in the workplace
- Cooperate in safety, report hazards
HSE Amendment Act (2002)

- Shift work is a cause of fatigue
 - Any work pattern that displaces sleep time

- New Health and Safety at Work Act
 - In force ??
 - Broader attribution of responsibility
 - More enforcement approaches and stronger penalties
What is fatigue?

- Fatigue is: a physiological state of reduced mental or physical performance capability resulting from sleep loss or extended wakefulness, circadian phase, or workload (mental and/or physical activity) that can impair a person’s alertness and ability to work safely and efficiently (from ICAO 2011)

- Fatigue is: Not enough sleep to recover from energy expenditure (mental, physical emotional) of all waking activities (not just work)

Shared responsibility for managing the hazard
Why sleep matters

- Brain needs to go ‘off-line’ for essential recovery and maintenance
 - Ignores (mostly) inputs from the senses (light, sound, smell)
 - Complex series of processes
 - dreaming (REM) and non-dreaming (non-REM)
 - memory consolidation, learning
 - repair of tissue wear-and-tear
 - growth
 - recharge immune system
 - regulate appetite, metabolism …
 - Wake up as an updated version of yourself!

A third of life
Not enough sleep

Effects of sleep loss are:
- cumulative
 - get progressively worse day-after-day until recovery sleep is taken
- dose-dependent
 - shorter time allowed for sleep = faster decline in function

Belenky et al. 2003
Not enough sleep

- Restricted sleep leads to:
 - feeling sleepier, irritability, degraded alertness, slower reaction times, poorer coordination, slower thinking, loss of situation awareness, less creative problem-solving
 - uncontrolled sleep
 - sleepiness → microsleeps → established sleep

- Recovery is not hour-for-hour:
 - deeper, more consolidated sleep on 1st recovery night
 - recovery usually takes at least 2 nights of unrestricted sleep
 - 1st night - recover deep non-REM (slow-wave sleep)
 - 2nd night - recover REM
 - not 48 hours off
 - waking function can take more than 2 full nights of sleep to recover
Awake too long

- 40 participants
 - hand/eye coordination (unpredictable tracking task)
 - Protocol 1 - stay awake for 26 h from 8 am, tested every 2 h
 - Protocol 2 – drink 10-15 g alcohol every 30 min to a blood alcohol level of .10%

Dawson and Reid, Nature 1997
37 aircraft accidents (1978-1990) where pilot actions or inactions caused or contributed

- Median time awake: captains=12 hours, 1st officers=11 hours
 - 6 high time awake crews, median captains=13.8 hours, 1st officers=13.4 hours
 - 6 low time awake crews, median captains=5.3 hours, 1st officers=5.2 hours

- High time awake crews made:
 - More errors in total (median 12.2 versus 8.7)
 - More errors of omission (5.5 versus 2.0)
 - More procedural errors and tactical decision errors

US National Transportation Safety Board Safety Study 94/01

Guantanamo Bay, Cuba
18/08/83
Captain awake 23.5 hours
1st officer awake 19.0 hours
Flight engineer awake 21.0 hours
Recommended sleep
(US National Sleep Foundation Consensus 2015)
When are we sleepy?

NZ roads: fatigue-related fatal crashes
(annual average 2005-2010)
Why do we sleep at night?

Circadian body clock

- Pacemaker in the brain that drives daily cycles (circadian rhythms) in
 - How you function
 - body functions - hormones, heart rate, digestion ...
 - ability to do physical and mental work
 - How you feel
 - mood, sleepiness, fatigue ...

- Tracks light intensity even through closed eye lids
 - designed to keep us in step with the day/night cycle
 - connected to sleep-promoting centres and wake-promoting centres in the brain

A feature of life on earth
Circadian rhythm basics

- **Circadian low**
 - Most sleepy
 - Lowest body temperature
 - Least functional
 - Fatigue-related error most likely

- **Hard to fall asleep**

- **Hard to stay asleep**

- **Nap window**
Social time versus biological time

Light sensitive circadian body clock doesn’t adapt to shift work

- Trying to work when least functional
- Eating at physiologically inappropriate times
- Trying to sleep when primed for wake
 - other time demands, noise, light, heat …
Fatigue versus safety risk

- Risk depends on
 - What a fatigued person is doing
 - Other hazards present
 - Safety defences present

Solo truck driver at night
Driving at 100 km/hour
Desert Road vs Auckland motorway

Airline pilot in 4-pilot crew
In-flight sleep in crew bunk
Mid-cruise versus landing
Managing fatigue risk

- **Traditional approach** - limits on:
 - Maximum work hours
 - Minimum breaks within and between shifts
 - Frequency of 24-h breaks
 - Regulatory or by industrial contract
 - Most don’t address circadian variation
 - Don’t address risk

- **Alternative approach** - data-driven fatigue risk management systems based on:
 - New science and workplace expertise
 - Shared responsibility
 - Effective safety reporting culture
 - Ongoing monitoring and management of actual risk
 - Multiple strategies to reduce risk
Do Prescriptive Limits Work?

- Introduced in the USA
 - Rail, 1907
 - Trucking, 1937
 - Aviation, 1938

- 2011 NTSB’s most wanted safety improvement list
 - ‘address human fatigue’ was number 2 across all modes
The fatigue risk management cycle

- **Fatigue monitoring**: Routine data
 - rostered vs worked
 - sick leave
- **Hazard identification**
- **Risk assessment**
- **Fatigue mitigation**
- **Fatigue monitoring**

When does fatigue become a hazard?
- fatigue safety performance indicators

How often are people fatigued?
How likely that fatigue will cause an accident?
Prioritise which hazards to mitigate (fatigue or other)

Reduce fatigue
Reduce risk
Do both if possible

Predicted
- roster design
- bio-mathematical models

Incident/accident investigation
Data gathered as needed
- staff surveys
- sleep and fatigue monitoring studies...
Fatigue monitoring

- HSE Act requires staff to report hazards
 - Identify hazards before they grow into accidents

- Non-punitive must distinguish between
 - Intentional violation - disciplinary response
 - Unintentional human error - safety response
 - Normal part of human behaviour
 - Fatigue increases the likelihood of unintentional error

- Effective safety reporting culture
 - Reports have to be analysed and acted on if necessary
 - Staff need feedback on what happens as a result of reports (if nothing, why?)
Reducing fatigue

- Fatigue management education
 - Who? - shift workers, schedulers, dispatchers, line managers, OSH staff, ... CEO
 - What?
 - causes of fatigue and safety issues in your workplace
 - personal strategies to use at home (how to get better sleep)
 - personal strategies to use at work (strategic use of caffeine, napping, ...)
 - company policies related to fatigue management (for calling in too fatigued, how to report fatigue hazards ...)

- Reduce workload
- Improve skill level
- Healthy workforce
Reducing fatigue

- The perfect roster is permanent day work with unrestricted sleep at night

- Better roster design
 - adequate sleep opportunities
 - how fast is sleep debt building up?
 - how long 2 full nights of sleep in a row?
 - limits on continuous work (time awake, time-on-task fatigue)
 - Shift length
 - Breaks during shifts (workplace naps?)
 - predictable rosters, plan for covering on-call or call back
 - knowing ahead of time helps people to arrive at work better-rested
 - getting people home safely
 - fair distribution of weekends off
 - work/life balance matters
Reducing fatigue-related risk

- Are task-related hazards greater for fatigued people?
 - Different mitigations on the night shift?

- Are other workplace hazards greater for fatigued people?
 - Moving machinery vs slower reaction time and decision making...
Reducing fatigue-related risk

- Policies/protocols/procedures for
 - calling in fatigued
 - workplace napping (when, where, how)
 - managing staff with chronic sleep problems
 - analysis of data for monitoring fatigue
 - acting on data, feedback to staff and management
 - linking fatigue management to other hazard management
 - risk assessment
 - cost of mitigations
 - who decides about the $$?
 - getting home safely? - risk to self and others on the road
Who is responsible?

Mr F was a printer who had been undergoing retraining for 2 weeks
- usual work pattern 07:00 – 14:30
- 1-hr drive to and from work

Day before the crash
- 07:00-14:30 (shift length 7.5 hrs)
- Call back (no sleep) 21:45-11:30 (shift length 13.5 hrs)

30 hrs awake after 4 days with 05:30 wakeup
- killed when his car hit a bridge

Told a workmate
- was feeling stuffed but had asked if he could do the overtime as he had a zero bank account

Several staff raised concerns about Mr F’s state during the night shift

Told a service station attendant on his way home
- He told me that he couldn’t do the full day. He was absolutely knackered and was going home

Union took a case against the company for failure to manage fatigue.
Conclusions

- Managing fatigue and shift work requires:
 - workforce/management collaboration
 - whole-of-life issues
 - regulatory requirement
 - fatigue is inevitable in 24/7 operations
 - Shared knowledge base
 - education/training on causes of fatigue, management strategies
 - clear communication, policies, and procedures
 - Monitoring fatigue levels in your workplace
 - Pooling scientific/workplace/organisational expertise to come up with better solutions
 - Integration with management of other hazards

- The complexity of the systems you need depends on the complexity of your operation and the level of fatigue-related risk

Questions?
Fatigue Risk Management Systems

FRMS Policy
- Identifies FRMS elements
- Identifies FRMS operations (scope)
- Reflects shared responsibility
- States safety objectives
- Declares management commitment
- Identifies lines of accountability

Promotion Processes
- Training program
- Communication plan

Documentation
- Policy and objectives
- Processes and procedures
- Accountabilities, responsibilities and authorities
- Mechanism for involvement of all stakeholders
- FRMS training records
- Planned and actual times worked
- Outputs (findings, recommendations, actions)

Fatigue Safety Action Group
- oversee the development, implementation of the FRMS
- oversee the ongoing operation of the FRM processes
- contribute as appropriate to the FRMS safety assurance processes
- maintain the FRMS documentation
- be responsible for ongoing FRMS training and promotion

FRM Processes
- Fatigue mitigation
- Risk Assessment
- Hazard identification

Safety Assurance Processes
- Compare with Safety Performance Indicators
- Identify emerging hazards
- New external hazards

Shared Data

Model Diagram
Discussion: your work environment(s)

- what are the main causes of workplace fatigue?
- what are safety risks posed by fatigued people?
- what mitigations are available to reduce fatigue?
- what mitigations are available to reduce the safety risks associated with fatigued people?

- what data do you have available for routine tracking of fatigue hazards?
- what other data might be useful?
- do you analyse for the role of fatigue in safety events? If yes, how?
- who is responsible for:
 - fatigue hazard identification?
 - fatigue risk assessment?
 - choosing and implementing fatigue mitigations?

- who checks that you are meeting your obligations under the HSE Act?